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SUMMARY

Centrosome amplification is a common feature of hu-
man tumors, but whether this is a cause or a conse-
quence of cancer remains unclear. Here, we test the
consequenceofcentrosomeamplificationbycreating
mice in which centrosome number can be chronically
increased in the absence of additional genetic de-
fects. We show that increasing centrosome number
elevated tumor initiation inamousemodelof intestinal
neoplasia. Most importantly, we demonstrate that
supernumerary centrosomes are sufficient to drive
aneuploidy and the development of spontaneous
tumors in multiple tissues. Tumors arising from
centrosome amplification exhibit frequent mitotic er-
rors and possess complex karyotypes, recapitulating
a common feature of human cancer. Together, our
data support a direct causal relationship among
centrosome amplification, genomic instability, and
tumor development.

INTRODUCTION

The centrosome is a cellular organelle that plays a central role

in coordinating most microtubule-related processes, including

organizing the bipolar spindle that partitions the chromosomes

during cell division. Faithful control of centrosome number is de-

regulated in a wide range of solid and blood-borne cancers,

leading to the acquisition of extra copies of centrosomes, a

feature known as centrosome amplification (Chan, 2011). Super-

numerary centrosomes are observed early in the development of

many tumors and often correlate with advanced tumor grade

and poor clinical outcome (Godinho and Pellman, 2014; Nigg

and Raff, 2009; Nigg, 2006). In cultured cells, centrosome ampli-

fication causes mitotic errors that can lead to chromosome mis-

segregation (Ganem et al., 2009; Silkworth et al., 2009) and chro-

mosomal rearrangements (Crasta et al., 2012; Ganem and
De
Pellman, 2012; Janssen et al., 2011). Moreover, extra centro-

somes can promote invasive phenotypes in a 3D culture model

(Godinho et al., 2014). These observations suggest that centro-

some amplification could promote the initial stages of tumor

development, but definitive evidence for this proposal is still

lacking.

To examine the consequences of centrosome amplification

in vivo, considerable attention has been focused on Plk4, a key

regulator of centrosome duplication (Bettencourt-Dias et al.,

2005; Habedanck et al., 2005). Overexpression of this kinase in-

creases centrosome number in the absence of direct effects on

cellular ploidy or oncogenes and tumor suppressor genes and

provides an excellent experimental tool to study the long-term

consequence of having cells with excess centrosomes. How-

ever, studies in animal models have so far provided contradic-

tory views on the specific contribution of centrosome amplifica-

tion to tumor development. Experiments in flies have shown that

larval brain and wing disk tissues with supernumerary centro-

somes are able to initiate tumors in transplantation assays (Sa-

bino et al., 2015; Basto et al., 2008; Castellanos et al., 2008).

In mammals, however, centrosome amplification in embryonic

neural progenitors results in aneuploidy, cell death, and micro-

cephaly but does not promote tumorigenesis (Marthiens et al.,

2013). In addition, increasing centrosome number in the skin of

mice failed to promote formation of spontaneous, or carcin-

ogen-induced, skin tumors (Kulukian et al., 2015; Vitre et al.,

2015). By contrast, centrosome amplification—either globally

or in the skin—accelerates the onset of tumors caused by loss

of p53 (Sercin et al., 2016; Coelho et al., 2015). Thus, while

centrosome amplification can modify tumor outcome in a p53-

null background, the interpretation is complicated by the fact

that loss of p53 is associated with increased numbers of centro-

somes in some contexts (Fukasawa et al., 1996). Furthermore, it

remains unclear if centrosome amplification can trigger tumor

formation in the absence of direct effects on the p53 tumor sup-

pressor pathway.

In this report, we describe the development of a doxycycline-

inducible mouse model in which the levels of Plk4 can be

increased to promote widespread and chronic centrosome

amplification in vivo. This model allowed us to rigorously assess
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the long-term consequences of having cells with too many cen-

trosomes and their contribution to tumor initiation. We show that

despite being tolerated in many tissues, extra centrosomes

increase tumor initiation in an intestinal cancer mouse model.

Most importantly, we demonstrate that a chronic or transient

increase in Plk4 promotes aneuploidy and centrosome amplifi-

cation that drives the development of spontaneous tumors

in multiple tissues. Tumors that form in the presence of extra

centrosomes exhibit complex karyotypes similar to what is

observed in themajority of human cancers. Together, these find-

ings support the conclusion that centrosome amplification can

promote genome instability and tumorigenesis.

RESULTS

Plk4 Overexpression Drives Centrosome Amplification
In Vitro
To drive centrosome amplification in a temporally controlled

manner in vivo, we developed amousemodel in which increased

synthesis of Plk4 can be induced by addition of doxycycline.

We integrated a single-copy Plk4-EYFP transgene, driven by a

doxycycline-regulatable promoter, downstream of the Col1a1

locus in embryonic stem cells (ESCs). Targeted ESCs were

then used to produce the Plk4-EYFP transgenic mice, which

were crossed with mice expressing the reverse tetracycline

transactivator (rtTA) to allow doxycycline-inducible expression

of Plk4-EYFP (Figure 1A). Mice and cells that harbor homozy-

gous copies of the Plk4-EYFP and rtTA transgenes (Plk4-

EYFPhom; rtTAhom) are referred to hereafter as Plk4Dox.

To characterize the effect of Plk4 overexpression in vitro, we

derived primary mouse embryonic fibroblasts (MEFs) from con-

trol and Plk4Dox embryos. In doxycycline-treated Plk4Dox MEFs,

Plk4 mRNA levels rose�6-fold (Figure S1A) and the level of Plk4

protein at the centrosome increased �2-fold (Figures 1B, S1B,

and S1C). This modest elevation in the level of Plk4 induced sub-

stantial centrosome amplification; after 3 and 5 days the number

of cells with increased centrosome amplification rose to 69%

and 79%, respectively (Figures 1C, 1D, and S1D). As expected,

centrosome amplification was not observed in doxycycline-

treatedMEFs that carried either the Plk4-EYFP or rtTA transgene

alone (Figure S1E).

Cells that enter mitosis with centrosome amplification can

either undergo multipolar divisions or cluster their centrosomes

prior to division (Basto et al., 2008; Quintyne et al., 2005; Ring

et al., 1982). Examination of mitotic figures revealed that Plk4Dox

MEFs avoided lethal multipolar divisions by clustering extra cen-

trosomes into pseudo-bipolar spindles with high efficiency (Fig-

ure1E).Consistentwithprevious reports (Ganemetal., 2009;Silk-

worth et al., 2009), centrosome clustering significantly increased

the frequency of mitotic errors (Figure 1F). Although aneuploidy

increased in primary MEFs with repeated passages in culture

(Weaver et al., 2007; Hao and Greider, 2004), cells with supernu-

merary centrosomes were more aneuploid than wild-type MEFs

at both time points (as determined with fluorescence in situ hy-

bridization for chromosome 15 or 16) (Figures 1G and 1H). Impor-

tantly, supernumerary centrosomes did not lead to an increase in

DNA damage or tetraploidization (Figures S1F–S1I).

Previously, we showed that centrosome amplification elicits a

durable p53-dependent proliferative arrest in non-transformed
2 Developmental Cell 40, 1–10, February 6, 2017
human cells (Holland et al., 2012). Consistently, supernumerary

centrosomes prevented the proliferation of primary MEFs (Fig-

ure 1I), and knocking out p53 alleviated this block (Figure 1J).

The fraction of cells with five or more centrosomes declined

in Plk4Dox MEFs after 5 days of doxycycline treatment, but

continued to increase in cells lacking p53 (Figures S1D

and S1J–S1K). This suggests that cells with high levels of

centrosome amplification are outcompeted in a p53-dependent

manner in vitro. Together, our data demonstrate that modest

overexpression of Plk4 in vitro drives centrosome amplification,

mitotic errors, and a p53-dependent cell-cycle arrest.

Elevated Plk4 Expression Promotes Formation of
Supernumerary Centrosomes in Tissues
To determine the effect of Plk4 overexpression on centrosome

number in vivo, we treated Plk4Dox and control animals with

doxycycline for 1 or 8 months and sacrificed animals to analyze

centrosome number in tissues. With the exception of the brain

(see below), there was an increase in Plk4 mRNA levels in all tis-

sues analyzed in Plk4Dox mice (Figures 2A and S2A). In line with

the prior results in MEFs, we observed a modest (<2-fold) in-

crease in Plk4 protein levels at the centrosome in the thymus

of Plk4Dox mice (Figure S2B). Consistent with increased Plk4,

we observed a chronic increase in centrosome number in the

skin, spleen, intestine, thymus, liver, pancreas, and stomach of

Plk4-overexpressing mice (Figures 2B, 2C, and S2C). In almost

every case where an increase in centrosome number was

observed, cells contained at most three extra centrosomes (Fig-

ures 2D, 2E, and S2D). By contrast, there was no increase in

centrosome amplification in the lung and kidney, despite the

11- and 338-fold increase in Plk4 mRNA levels in these tissues,

respectively (Figure S2A and S2C).

To determine whether the lack of centrosome amplification in

the lung and kidney was caused by the death of cells with extra

centrosomes, we assessed the expression of active caspase 3

and used TUNEL staining in tissues from Plk4Dox animals that

were treated for 1 month with doxycycline. There was no signif-

icant increase in active caspase 3 or TUNEL staining in any of the

tissues examined, suggesting that cells with extra centrosomes

are not eliminated by cell death (Figures 2F and 2G). Plk4 over-

expression does not promote centrosome amplification in quies-

cent cells (data not shown), suggesting that differences in prolif-

eration rates could contribute to tissue-specific differences in

centrosome amplification in response to Plk4 overexpression.

Concordantly, analysis of Ki67 staining in tissues revealed high

rates of proliferation in the skin, intestine, spleen, and thymus,

where robust centrosome amplification was observed, and low

turnover rates in the lung and kidney, where there was no in-

crease in centrosome number (Figures 2B, 2H, and S2C). Never-

theless, the liver, pancreas, and stomach showed a significant

increase in centrosome amplification despite a very small frac-

tion of proliferating cells (Figures 2H and S2C). This suggests

additional tissue-specific factors likely influence the relationship

between Plk4 overexpression and centrosome amplification.

Surprisingly, increased centrosome numbers correlated with hy-

perproliferation of cells in the thymus and decreased prolifera-

tion in the kidney (Figure 2H). These differences in cell prolifera-

tion highlight tissue-specific differences in the response to

centrosome amplification and may arise from alterations in
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Figure 1. A Modest Increase in Plk4 Promotes Centrosome Amplification and Aneuploidy In Vitro

(A) System used for doxycycline-inducible expression of Plk4.

(B) Quantification of the level of centrosomal Plk4 in Plk4Dox MEFs. N = 3, >150 centrosomes per experiment.

(C) Quantification of the level of centrosome amplification in Plk4Dox MEFs. N = 3, >150 cells per experiment.

(D) Immunofluorescent images of centrosomes in Plk4Dox MEFs.

(E) Quantification of anaphase phenotypes in Plk4Dox MEFs. N = 3, >150 cells per experiment.

(F) Quantification of anaphase lagging chromosomes in Plk4Dox MEFs. N = 3, >150 cells per experiment.

(G) Quantification of the fraction of cells having <2 or >2 copies of chromosome 15 or 16. N = 3, >150 cells per experiment.

(H) Immunofluorescent images of FISH performed on Plk4Dox MEFs using probes against chromosome 15 and 16. Arrowheads mark each copy of chromosome

15 or 16 (Chr15 or Chr16).

(I) Graph showing the fold increase in cell number for Plk4Dox MEFs. N = 3, performed in triplicate.

(J) Graph showing the fold increase in cell number for Plk4Dox MEFs expressing SpCas9 and a single-guide RNA against p53. N = 3, performed in triplicate.

All data are presented as means ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001; two-tailed Student’s t test. Scale bars represent 10 mm. Related to Figure S1.
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Figure 2. Increased Plk4 Levels Promote

Chronic Centrosome Amplification in Multi-

ple Tissues

(A) Fold increase in Plk4 mRNA in tissues from

Plk4Dox mice treated with doxycycline for 1 month.

N = 3, performed in triplicate.

(B and C) Quantification of the level of centrosome

amplification in tissues from Plk4Dox mice treated

with doxycycline for 1 or 8 months. N R 4.

(D) Quantification of centrosome number in tissues

from Plk4Dox mice treated with doxycycline for

8 months. N = 4.

(E) Representative images of centrosomes in tis-

sues from doxycycline-treated Plk4Dox or control

animals.

(F–H) Quantification of the fraction of cleaved

caspase 3, TUNEL, or Ki67-positive cells in tissues

from Plk4Dox mice treated with doxycycline for

1 month. N R 4.

All data are presented as means ±SEM. *p < 0.05,

**p < 0.01, and ***p < 0.001; two-tailed Student’s

t test. Scale bars represent 10 mm. Related to

Figures S2 and S3.
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growth signaling as a result of changes in centrosome or cilia

number (Arquint et al., 2014).

Overexpression of Plk4 in the brain of mice has been reported

to cause microcephaly and behavioral defects (Coelho et al.,

2015; Marthiens et al., 2013). However, transgenes integrated

downstream of the Col1a1 locus are not expressed in major cells

types of the brain (Hochedlinger et al., 2005) (Figure S2E).

Consistently, there was no increase in Plk4 RNA levels or centro-

some amplification in the brain of doxycycline-treated Plk4Dox

mice (Figure S2A and S2C). Moreover, Plk4-overexpressing an-

imals did not show behavioral deficits or alterations in brain size

(data not shown and Figure S3A).

Centrosome Amplification Impairs Epidermal
Architecture
A striking feature in mice overexpressing Plk4 was progressive

hair loss that continued throughout the life of the animal and

led to almost complete balding in 8-month-oldmice (Figure S3B).

Consistent with previous reports in mice exhibiting centrosome

amplification in the skin (Sercin et al., 2016; Coelho et al., 2015),
4 Developmental Cell 40, 1–10, February 6, 2017
mice overexpressing Plk4 exhibited a

thickened epidermis and disrupted hair

follicle morphology. Systematic histologi-

cal examination of other tissues from

Plk4-overexpressing mice revealed no

major pathology (Figures S3C and S3D).

We conclude that, with the notable excep-

tion of the skin, centrosome amplification

is tolerated in many tissues in vivo.

Centrosome Amplification Causes
Aneuploidy In Vivo
To evaluate whether centrosome amplifi-

cation leads to aneuploidy in vivo, we

assessed chromosome number in sple-

nocytes from mice treated with doxycy-
cline for 1 or 8 months. Centrosome amplification increased

the fraction of aneuploid splenocytes at both time points (Figures

3A, S4A, and S4B) but did not promote cytokinesis failure or pol-

yploidization (Figure S4C). To investigate whether extra centro-

somes lead to the accumulation of aneuploid cells in aged

mice, we isolated epidermal cells from 12- to 21-month-old

mice and determined their karyotype by low coverage genomic

copy number analysis in single cells. Analysis of 99 cells from

threemice with centrosome amplification revealed 23 of the cells

to be aneuploid (average of 23%), whereas zero aneuploid cells

were identified in the 78 single cells sequenced from two control

animals (Figures 3B and 3C). In summary, supernumerary cen-

trosomes promote chromosome segregation errors and aneu-

ploidy, in the absence of polyploidization, in tissues.

Centrosome Amplification Increases the Initiation of
Intestinal Tumors
To test whether centrosome amplification is able to influence

tumorigenesis, we first used a mouse model of intestinal

neoplasia (Su et al., 1992; Moser et al., 1990). Mice that express
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Figure 3. Centrosome Amplification Drives

Aneuploidy In Vivo

(A) Proportion of severely aneuploid (4N ± >2

chromosomes) splenocytes from control and

Plk4Dox mice treated with doxycycline for 1 or

8 months. N = 3, >120 cells per experiment.

(B) Table shows the fraction of aneuploid cells

determined by single-cell sequencing of epidermal

cells from doxycycline-treated control or Plk4Dox

mice.

(C) Genome-wide copy number plots of aneuploid

single cells sequenced from the epidermis of

three Plk4Doxmice treatedwith doxycycline for 12–

18.5 months. Individual cells are represented in

rows with copy number states indicated in colors.

All data are presented as means ± SEM. *p < 0.05;

two-tailed Student’s t test. Scale bars represent

10 mm. Related to Figure S4.
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a single truncated allele of the adenomatous polyposis coli (APC)

tumor suppressor (APCMin) develop early-onset adenomatous

intestinal tumors with complete penetrance. To evaluate the ef-

fect of Plk4 overexpression on centrosome number in APCMin/+

cells, we derivedMEFs fromAPCMin/+;Plk4Dox embryos. Doxycy-

cline addition drove increased levels of Plk4 expression leading

to sustained centrosome amplification, with 55% and 89% of

APCMin/+;Plk4Dox cells containing extra centrosomes at days 3

and 14 after doxycycline addition, respectively (Figures 4A and

S4D). As expected, extra centrosomes increased the frequency

of chromosome segregation errors and micronuclei formation in

APCMin/+;Plk4Dox MEFs and led to cell-cycle arrest in vitro (Fig-

ures 4B, 4C, and S4E).

Next, we examined the size and number of tumors formed in

the intestine of APCMin/+ and APCMin/+;Plk4Dox animals. Once

again, centrosome number was significantly increased in both

the normal intestine and in intestinal tumors from doxycycline-

treated APCMin/+;Plk4Dox mice (Figures 4D–4F). Importantly,

tumor number was significantly increased in mice with centro-

some amplification (average of 69 tumors in APCMin/+ animals

compared with 129 tumors in APCMin/+;Plk4Dox mice; Figures

4G and 4I). However, tumor size remained unchanged (Figures

4H and 4I). Consistent with prior reports (Luongo et al., 1994),

we observed that intestinal APCMin/+ and APCMin/+;Plk4Dox tu-

mors showed a reduced abundance of the wild-type allele of

APC (Figure S4F). These data demonstrate that, in this context,

centrosome amplification promotes the initiation, but not pro-

gression, of intestinal tumors.

Centrosome Amplification Drives Spontaneous
Tumorigenesis
Despite the fact that centrosome amplification is a common

feature of many cancer cells, it remains untested whether

chronic centrosome amplification is sufficient to initiate tumori-

genesis in mammals. To address this question, we aged cohorts

of Plk4Dox and control mice that were fed doxycycline starting
Develo
from 1 to 2 months of age. Strikingly,

Plk4Dox mice succumbed to the develop-

ment of spontaneous tumors starting at

36 weeks (median tumor-free survival of
55 weeks) (Figure 5A). Specifically, Plk4-overexpressing mice

developed lymphomas, squamous cell carcinomas, and sar-

comas, while spontaneous tumors were not observed in Plk4-

EYFP, rtTA, or wild-type mice treated with doxycycline (Figures

5A and 5C). In contrast to lymphomas that developed in mice

lacking p53, tumors from Plk4-overexpressing mice exhibited

high levels of centrosome amplification (average of 44% amplifi-

cation in lymphomas and squamous cell carcinomas in Plk4Dox

mice) (Figure 5B). The vast majority of the tumor cells exhibiting

centrosome amplification contained just one or two extra centro-

somes (Figure S5A). Two of the lymphomas that developed in

mice with centrosome amplification exhibited acute tumor lysis

syndrome, a feature that was not observed in lymphomas that

developed in p53-null animals (Figure S5B).

p53 has been shown to suppress the proliferation of cells

with extra centrosomes in cell culture (Holland et al., 2012). To

examine whether spontaneous tumors that develop in mice

with centrosome amplification exhibit inactivation of the p53

pathway, we analyzed the expression level of p53 target genes

in thymic lymphomas that developed in p53�/� and Plk4Dox

mice. As expected, p53�/� tumors had low expression of p53

and p53 transcriptional target genes (FAS, BCL2, BAX, and

PUMA) (Figure S5C). By contrast, thymic lymphomas that devel-

oped in Plk4Dox animals had a wide variation in the level of p53

expression. Despite the variation in p53 levels, the thymic tumors

from Plk4Dox mice showed an overall reduction in the expression

of p53 target genes, indicating the p53 pathway is at least partly

comprised in spontaneous tumors that develop as a result of

centrosome amplification (Figure S5C). Together, these data

suggest that the p53 pathway acts as a barrier to the continued

growth of cells with supernumerary centrosomes in vivo.

Since chronic increases in Plk4 could have consequences in-

dependent of centrosome amplification, we also tested whether

a transient increase in Plk4 levels could trigger spontaneous tu-

mor development. Remarkably, treatment with doxycycline for

1 month led to an increase in centrosome number in the spleen,
pmental Cell 40, 1–10, February 6, 2017 5
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Figure 4. Centrosome Amplification Promotes Tumor Initiation

(A) Quantification of the level of centrosome amplification in APCMin/+; Plk4Dox MEFs. N = 3, >150 cells per experiment.

(B) Quantification of anaphase lagging chromosomes in APCMin/+;Plk4Dox MEFs. N = 3, >84 cells per experiment. Scale bar represents 10 mm.

(C) Frequency of micronuclei observed in APCMin/+;Plk4Dox MEFs. N = 3, >50 cells per experiment.

(D and E) APCMin/+ and APCMin/+;Plk4Dox mice were treated with doxycycline from 10 days of age and sacrificed at 90 days old. Quantification shows the level of

centrosome amplification in the intestines or intestinal polyps of APCMin/+ and APCMin/+;Plk4Dox mice. N = 3, >150 cells per experiment.

(F) (Left) Immunofluorescence staining of an intestinal polyp and (right) a magnified view of centrosomes in this tumor. Scale bars represent 200 mm (left) and

10 mm (right).

(G and H) Quantification of tumor number (G) or size (H) in 90-day-old APCMin/+ and APCMin/+;Plk4Dox mice.

(I) Images show intestinal polyps in an APCMin/+ and APCMin/+;Plk4Dox mouse. Scale bars represent 1 mm.

All data are presented as means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, and NS (not significant) indicates p > 0.05; two-tailed Student’s t test. Related to

Figure S4.
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intestine, liver, and pancreas of 16- to 18-month-old Plk4Dox

mice (Figure S5D). Centrosome amplification can therefore

persist in some tissues for long periods of time after transient

Plk4 overexpression. Consistent with the observations in chron-

ically treated mice, Plk4Dox animals treated with doxycycline

for 1 month also developed lymphomas, squamous cell carci-

nomas, and sarcomas (Figure S5E). Moreover, tumors from

these animals displayed high levels of centrosome amplification

(Figure S5F). Together, these data establish a direct causal rela-
6 Developmental Cell 40, 1–10, February 6, 2017
tionship between increased Plk4 levels, centrosome amplifica-

tion, and spontaneous tumor development.

Centrosome Amplification Promotes the Development
of Aneuploid Tumors
In human tumors, centrosome amplification strongly correlates

with genomic instability. To evaluate the degree of aneuploidy

and genome instability in tumors caused by centrosome amplifi-

cation, we performed whole-genome sequencing of tumor DNA



Figure 5. Centrosome Amplification Pro-

motes Spontaneous Tumorigenesis

(A) Kaplan-Meier survival analysis of Plk4Dox and

control (C57BL/6J) mice chronically fed doxycy-

cline from 1 to 2 months of age. p Value was

calculated using the log-rank test.

(B) Quantification of the level of centrosome

amplification in tumors from Plk4Dox and p53�/�

mice. Horizontal lines represent the mean and

bars represent ± SEM.

Lymp., lymphoma; SCC, squamous cell carci-

noma.

(C) Representative examples of the different tumor

types that develop in doxycycline-treated Plk4Dox

mice. SCC, squamous cell carcinoma. Dashed line

indicates site of tumor.

(D and E) Genomic identification of significant

targets in cancer (GISTIC) analysis of low

coverage whole-genome sequencing (WGS) of

squamous cell carcinomas (SCCs) and lym-

phomas from doxycycline-treated Plk4Dox mice

shows gains of specific chromosomes. Scale

represents Q values.

(F) Low coverage whole-genome sequencing

(WGS) plots for a sarcoma and a squamous cell

carcinoma derived from Plk4Dox mice.

(G) (Top) WGS plots from a T cell lymphoma

derived from doxycycline-treated Plk4Dox mice.

(Bottom) Genome-wide copy number plots of

aneuploid single cells sequenced from the same

T cell lymphoma. 12/39 sequenced cells showed

evidence of aneuploidy. Individual cells are rep-

resented in rows with copy number indicated in

colors.

(H) (Top) WGS plots from a B cell lymphoma

derived from doxycycline-treated Plk4Dox mice.

(Bottom) Genome-wide copy number plots of

aneuploid single cells sequenced from the same B

cell lymphoma. 32/47 sequenced cells showed

evidence of aneuploidy. Related to Figure S5.
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isolated from three spontaneous T cell lymphomas, two B cell

lymphomas, five squamous cell carcinomas, and one sarcoma

from doxycycline-treated Plk4Dox mice. All tumors showed evi-

dence of aneuploidy, and each tumor type showed evidence

of clonal selection for recurring chromosomal abnormalities. In

particular, gains of chromosome 2, 5, and 17 were observed

in squamous cell carcinomas, while T and B cell lymphomas

showed recurrent gains of chromosome 14 and 15 (Figures

5D–5H and S5G–S5I). Notably, chromosome 15 carries the

Myc proto-oncogene and is frequently gained in murine blood

cancers (Bakker et al., 2016). To examine the extent of tumor

heterogeneity, we performed whole-genome sequencing of sin-
Develo
gle cells isolated from a thymic and a

splenic lymphoma that developed in two

mice chronically overexpressing Plk4. In

the T cell lymphoma, 12 aneuploid cells

were sequenced and many showed

gains of chromosomes 1, 11, and 15 as

well as segments of chromosomes 4

and 10. Thirty-two aneuploid cells were

sequenced in the splenic lymphoma,
with most cells having gains of chromosomes 14, 15, and 17

(Figures 5G and 5H). Importantly, while both of the tumor sam-

ples contained recurrent chromosomal alterations, these tumors

also exhibited karyotypic diversity, with some cells in each tumor

exhibiting different gains and losses of whole chromosomes.

These data suggest ongoing chromosome segregation errors

in tumors with extra centrosomes.

DISCUSSION

A causal association between centrosome amplification and

tumorigenesis was originally proposed by Boveri over a century
pmental Cell 40, 1–10, February 6, 2017 7
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ago but has yet to be firmly established (Boveri, 1914). Here, we

have examined the long-term consequence of supernumerary

centrosomes in mice. We demonstrate that centrosome amplifi-

cation can increase tumor initiation events in a mouse model of

intestinal cancer. Most importantly, we show that extra centro-

somes cause aneuploidy and trigger spontaneous tumorigen-

esis in multiple tissues. We conclude that centrosome amplifica-

tion is sufficient to promote tumorigenesis in mammals.

In our experiments, we used Plk4 overexpression as a tool to

drive centrosome amplification in vivo. While roles of Plk4

outside of centrosome biogenesis have been proposed (Rosario

et al., 2010, 2015; Martindill et al., 2007), multiple lines of evi-

dence argue that centrosome amplification is responsible for

triggering spontaneous tumorigenesis in mice that overexpress

Plk4. First, modest increases in Plk4 protein are sufficient to pro-

mote persistent centrosome amplification and spontaneous tu-

mor development. Second, centrosome number is elevated in

all three tissues that exhibit a predisposition to tumor develop-

ment; conversely, tissues with high levels of Plk4 expression,

but no increase in centrosome amplification, do not show an in-

crease in tumorigenesis. Third, tumors that develop in Plk4-over-

expressing mice generally show higher levels of centrosome

amplification than in the normal tissue from which they devel-

oped. Finally, even a transient increase in Plk4 promotes persis-

tent centrosomes amplification and tumorigenesis. Therefore,

although we cannot formally exclude that the effects we observe

reflect roles of Plk4 outside of centrosome duplication, our evi-

dence firmly argues that increases in centrosome number drive

the effects we observe in vivo.

To our knowledge, our study provides the first demonstration

that centrosome amplification is sufficient to drive aneuploidy in

tissues with wild-type p53. However, the role of centrosomes is

not restricted to mitosis, and extra copies of centrosomes have

been shown to disrupt cilia signaling (Mahjoub and Stearns,

2012) and promote alterations in the interphase cytoskeleton

that could facilitate invasion (Godinho et al., 2014). Since

hematopoietic lineages lack primary cilia, alterations in ciliary

signaling are unlikely to underlie lymphomagenesis in cells

with supernumerary centrosomes (Finetti et al., 2011). Instead,

our study demonstrates that tumors with extra centrosomes

exhibit recurrent aneuploidies. In addition, we show that centro-

some amplification increases tumor initiation in the APCMin/+

mouse model. Since tumors in this model are proposed to

be driven by loss of the wild-type allele of APC, we propose

that centrosome amplification increases tumor initiation by

facilitating the loss of the copy of chromosome 18 containing

the wild-type APC allele (Luongo et al., 1994). Therefore, while

further studies will be required to determine the precise

mechanism by which extra centrosomes promote tumori-

genesis, our data are consistent with a model in which centro-

some amplification drives aneuploidy that promotes tumor

development.

A central question that arises is why have other studies that

employed Plk4 overexpression not reported spontaneous

tumorigenesis (Sercin et al., 2016; Coelho et al., 2015; Kulukian

et al., 2015; Vitre et al., 2015; Marthiens et al., 2013)? A key dif-

ference in the mouse model that we report here is that we use a

single-copy Plk4 transgene knocked into the Col1a1 locus to

achieve a modest increase in Plk4 levels that typically leads to
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the creation of just one or two extra centrosomes per cell. This

is similar to the extent of centrosome amplification observed in

human tumors (Denu et al., 2016; Kayser et al., 2005). We pro-

pose that small increases in centrosome number are permissive

for tumor development. By contrast, large numbers of extra cen-

trosomes are likely to be detrimental to cell viability because they

are clustered inefficiently prior to division and lead to an increase

in the frequency of lethal multipolar divisions. Mouse models

that are created by the random integration of Cre-inducible

Plk4 transgenes may express the kinase at higher levels than

achieved in our animal model (Sercin et al., 2016; Kulukian

et al., 2015; Vitre et al., 2015). We predict that high levels of

Plk4 overexpression, and thus larger increases in the number

of centrosomes per cell, will be detrimental to long-term cell sur-

vival. This could explain silencing of Plk4 transgene expression

that has been reported in the skin of one mouse model (Sercin

et al., 2016), and also why global overexpression of Plk4 in

another mouse model did not achieve centrosome amplification

in the majority of tissues without the removal of p53 (Vitre et al.,

2015). Finally, we note that a previous study that drove Plk4 over-

expression using a single-copy transgene at the ROSA26 locus

did not follow survival to the point at which we observe the devel-

opment of spontaneous tumors in mice with centrosome ampli-

fication (Coelho et al., 2015).

In summary, we demonstrate that mice with extra centro-

somes develop spontaneous tumors with high levels of genomic

instability. We conclude that extra centrosomes are not by-

standers in tumor development, but actively promote tumorigen-

esis by provoking mitotic errors that facilitate the evolution of

malignant karyotypes. These findings support the therapeutic

targeting of cells with extra centrosomes in human tumors.
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STAR+METHODS
KEY RESOURCES TABLE
Reagent or Resource Source Identifier

Antibodies

Rabbit polyclonal anti-Pericentrin Abcam Cat# Ab4448; RRID: AB_304461

Rabbit polyclonal anti-Cleaved caspase 3 (Asp175) Cell Signaling Technologies Cat# 9661; RRID: AB_2341188

Rabbit polyclonal anti-p-Histone H2A.X (Ser139) Cell Signaling Technologies Cat# 2577

Mouse monoclonal anti-Centrin Millipore Cat# 04-1624

Rabbit polyclonal anti-Cep192 (a.a.1–211) Karen Oegema lab, UCSD NA

Rabbit polyclonal anti-Ki67 (D3B5) Cell Signaling Technologies Cat# 9129

Donkey anti-rabbit, mouse, or goat 488, 555, and 647 Life Technologies Cat #s: A-21206, A-21202, A-21432

Rabbit polyclonal anti-Plk4-647#1 (a.a.510–970) Moyer et al., 2015 NA

Rabbit polyclonal anti-Plk4-647#3 (a.a. 564–580) This paper NA

Rabbit polyclonal anti-Cep192 (a.a.1–211) Karen Oegema lab, UCSD NA

Goat polyclonal anti-y-Tubulin-555 This paper NA

Goat polyclonal anti-Cep192-650 This paper NA

Biological Samples

p53�/� lymphomas for RNA isolation Steve Desiderio lab, JHU NA

p53�/� cryopreserved lymphomas for IF analysis Benjamin Vitre lab, CNRS-CRBM NA

Chemicals, Peptides, and Recombinant Proteins

Doxycycline (for in vivo) RenYoung Pharma NA

Doxycycline (for cell culture) Sigma CAS#: 24390-14-5

Doxorubicin Sigma Cat#: D1515

Colcemid SIgma Cat#: 477-30-5

IL-2 Roche Cat#: 11271164001

ConA Sigma C5275

LPS Sigma LPS25

Critical Commercial Assays

TUNEL staining (Roche) Sigma-Aldrich Cat#: 11684795910

GenElute Mammalian Genomic DNA extraction kit Sigma Cat#: G1N70

Illumina TruSeq DNA sample preparation kit V2 Illumina Cat#: RS-122-2001

SYBR Green Thermo Fisher Scientific Cat#: AB-1159/A

SuperScript III/IV Reverse Transcriptase Thermo Fisher Scientific Cat #s: 18080093, 18090010

Mouse IDetect Chromosome 15 D15Mit224 (4 cM)

point probe

Empire Genomics SKU: IDMP1015-R

Mouse IDetect Chromosome 16 D16Mit88 (10 cM)

point probe

Empire Genomics SKU: IDMP1016-1-G

DyLight 550 Antibody Labeling Kit Thermo Fisher Cat#: 84530

DyLight 650 Antibody Labeling Kit Thermo Fisher Cat#: 84535

Deposited Data

WGS raw sequencing reads: ArrayExpress database This paper www.ebi.ac.uk/arrayexpress;

ArrayExpress: E-MTAB-5043

Single-cell WGS sequencing raw sequencing reads:

European Nucleotide Archive database

This paper www.ebi.ac.uk/ena; Acc.# PRJEB1854

Experimental Models: Cell Lines

Mouse embryonic fibroblasts (Plk4-YFP, M2rtTA) This paper NA

KH2 ES cells Beard et al., 2006 NA

Experimental Models: Organisms/Strains

Mouse: C57BL6/J The Jackson Laboratory Stock number: 000664
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Continued

Reagent or Resource Source Identifier

Mouse: APCmin/+ The Jackson Laboratory Stock number: 002020

Mouse: EGFP-Centrin Hirai et al., 2016 NA

Recombinant DNA

Mouse Plk4-EYFP cDNA with tetO and CMV min promoter in

pBS31 FLP-IN vector

This paper NA

pX459 vector with gRNA to mouse p53 This paper NA

Sequence-Based Reagents

Plk4-EYFP genotyping primers: ACT GTC GGG CGT ACA

CAA AT, CAA CCT GGT CCT CCA TGT CT and TGC TCG

CAC GTA CTT CAT TC

This paper NA

M2-rtTA genotyping primers: AAA GTC GCT CTG AGT TGT

TAT, GCG AAG AGT TTG TCC TCA ACC and GGA GCG

GGA GAA ATG GAT ATG

This paper NA

APCmin/+ genotyping primers: GCC ATC CCT TCA CGT

TAG, TTC CAC TTT GGC ATA AGG C and TTC TGA GAA

AGA CAG AAG TTA

This paper NA

APC locus PCR-based assay: F: TCT CGT TCT GAG AAA

GAC AGA AGC T and R: TGA TAC TTC TTC CAA AGC TTT

GGC TAT

This paper NA

qPCR for Plk4: F: 50-GAA ACA CCC CTC TGT CTT GG-30

and R: 50-GCA TGA AGT GCC TAG CTT CC-30
This paper NA

qPCR for p53: F: 50- CCC GAG TAT CTG GAA GAC AG-30

and R: 50-ATA GGT CGG CGG TTC ATG CC-30
This paper NA

qPCR for FAS: F: 50- GGA AAA GGA GAC AGG ATG ACC-30

and R: 50-CTT CAG CAA TTC TCG GGA TG-30
This paper NA

qPCR for BCL2: F: 50-TTC GCA GCG ATG TCC AGT CAG

CT-30 and R: 50-TGA AGA GTT CTT CCA CCA CCG T-30
This paper NA

qPCR for BAX: F: 50-ATG CGT CCA CCA AGA AGC TGA-30

and R: 50-AGC AAT CAT CCT CTG CAG CTC C-30
This paper NA

qPCR for PUMA: F: 50-GCA GCA CTT AGA GTC GCC-30

and R: 50-GTC GAT GCT GCT CTT CTT GT-30
This paper NA

qPCR for HPRT: F: 50-TGA TCA GTC AAC GGG GGA CA-30

and R: 50-TTC GAG AGG TCC TTT TCA CCA-30
This paper NA

qPCR for b-actin: F: 50- GGC TGT ATT CCC CTC CAT CG-30

and R: 50- CCA GTT GGT AAC AAT GCC ATG T-30
This paper NA

Software and Algorithms

GISTIC 2.0 Beroukhim et al., 2007 NA

AneuFinder (v1.2.0) Bakker et al., 2016 NA

Burrows-Wheeler Aligner Li and Durbin, 2009

Picard (v1.32 and v1.43) http://broadinstitute.github.io/picard NA

Mouse reference genome (GRCm38/mm10) UCSC genome browser https://genome.ucsc.edu/index.html

Ascat algorithm Van Loo et al., 2010 NA

Imaris Software: spot detection Bitplane (Oxford Instruments) NA
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to the Lead Contact, Dr. Andrew Holland (aholland@jhmi.edu)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse Lines
The Plk4Dox mouse line was created using previously described KH2 ES cells (Beard et al., 2006). KH2 ES cells possess the M2-rtTA

gene targeted to the ROSA26 locus under the control of the ROSA promoter. In addition, an FRT-flanked PGK-neomycin-resistance
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gene followed by a promoterless, ATG-less hygromycin-resistance is targeted downstream of the Col1a1 locus to allow site-specific

integration of a single copy transgene. To FLP-IN the tetracycline responsive Plk4-EYFP construct into KH2 ES cells, the mouse Plk4

ORF C-terminally tagged with EYFP was cloned downstream of the tetracycline operator and CMV minimal promoter in the pBS31

FLP-IN vector. KH2 ES cells were electroporated with pBS31-Plk4-EYFP and the pCAGGS-FLPe-puro plasmid encoding the FLP

recombinase. Cells were selected with Hygromycin B and clones were amplified and checked by PCR for correct targeting. Blasto-

cysts were injected with the targeted KH2 ES cells and chimeric mice identified. Germline transmission was detected by polymerase

chain reaction analysis of tail DNA obtained at weaning. Plk4-EYFP genotyping was performed with the following primers: ACT GTC

GGGCGTACACAAAT, CAACCTGGTCCTCCATGTCT and TGC TCGCACGTACTTCAT TC.M2-rtTA genotypingwas performed

with the following primers: AAAGTCGCTCTGAGT TGT TAT, GCGAAGAGT TTG TCCTCAACC andGGAGCGGGAGAAATGGAT

ATG. Plk4-EYFP; rtTAmice weremaintained bymating with C57BL6/Nmice. EGFP-Centrin mice were as previously described (Hirai

et al., 2016). APCMin/+ mice were purchased from the Jackson Laboratory (stock 002020) and genotyped using the following primers:

GCC ATC CCT TCA CGT TAG, TTC CAC TTT GGC ATA AGG C and TTC TGA GAA AGA CAG AAG TTA. Embryos and adults from

both genders were included in our analysis. Mice were housed and cared for in an AAALAC-accredited facility and all animal exper-

iments were conducted in accordance with Institute Animal Care and Use Committee approved protocols.

METHOD DETAILS

Doxycycline Induction
Mice were fed 1mg/mL doxycycline (RenYoung Pharma) in water supplemented with 25mg/ml sucrose (Sigma). Water was changed

twice per week for the duration of the treatment.

Spontaneous Tumorigenesis Studies
Plk4Dox and C57BL6/J animals were dosed chronically with doxycycline from 1 or 2months of age. Mice weremonitored daily during

the course of the study. Mice were euthanized when signs of distress or when visible tumors grew to > 2cm in size as per the Johns

Hopkins University ACUC guidelines.

Histological Analysis
A full necropsy was performed on every mouse sacrificed. Mouse tissues were harvested and fixed overnight in 4% paraformalde-

hyde at 4�C and then stored in 10% Neutral Buffered Formalin. The Johns Hopkins University, School of Medicine phenotyping core

performed tissue processing, paraffin embedding, and Hematoxylin & Eosin staining. All pathology and tumors were analyzed by a

certified veterinary pathologist.

Intestinal Sample Collection, Tumor Counts, and Measurements
Mice were maintained in a C57BL6/J genetic background. Intestines from 90 day old mice were collected, opened lengthwise and

laid flat onWhatman paper (GEHealthcare Life Sciences). Intestineswere imaged on a Zeiss dissectingmicroscopewith Zen imaging

software. Polyp number and size was quantified using FIJI. Intestines were fixed on Whatman paper in 4% PFA overnight. After fix-

ation, polyps were cut in half and processed for histology or immunofluorescence.

APC Locus PCR-Based Assay
Analysis of the loss of the wildtype APC locus was performed as described using a quantitative APC locus PCR assay (Luongo et al.,

1994). Briefly, >15 intestinal polyps or areas of normal intestine from a single animal were pooled together and DNA extracted using

the GenElute Mammalian Genomic DNA extraction kit (Sigma) following the manufacturer’s instructions. Each DNA sample was

amplified in two separate PCR reactions using the following primers: For: TCT CGT TCT GAG AAA GAC AGA AGC T and Rev:

TGA TAC TTC TTC CAA AGC TTT GGC TAT. The PCR product digested overnight with HindIII and then separated on a 3% Agarose

gel. The integrated intensity of the APC+ and APCMin bands quantified using Fiji. Each band was background subtracted and the in-

tensity of the APC+ bands multiplied by 1.17 (144 bp/123 bp) to correct for the smaller size, and proportionally reduced incorporation

of ethidium bromide, in the digested APC+ allele. The mean ratio of the corrected APC+/APCMin band intensities was calculated for

each sample.

Cell Culture
Mouse embryonic fibroblasts (MEFs) were harvested as previously described (Xu, 2005). Briefly, embryos were harvested at E13.5

and incubated in trypsin overnight at 4�C. The following day, the embryos incubated at 37�C for 30 minutes and cells dissociated by

pipetting. Cells were plated in DMEM media (Corning Cellgro) supplemented with 10% fetal bovine serum (Sigma), 100 U/mL peni-

cillin and 100 U/mL streptomycin. Cells were maintained at 37�C in an atmosphere with 5% CO2 and 3%O2. For the growth assays,

2 x 105 cells/well were plated in 6 well dishes and cells counted every 3 days. Each condition was run in triplicate and each growth

assay repeated at least 3 times. MEFs were passaged a maximum of 8 times before being discarded. Doxycycline (Sigma) was dis-

solved in H2O and used at a final concentration of 1 mg/ml and doxorubicin (Sigma) was dissolved in DMSO and used at 200 ng/ml

unless otherwise stated.
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Antibody Production
Full-length g-Tubulin or a fragment of CEP192 (amino acids 1-211) was cloned into a pET-23b bacterial expression vector (EMDMilli-

pore) containing a C-term 6-His tag. Recombinant protein was purified from Escherichia coli using Ni-NTA beads (QIAGEN) and used

for immunization (ProSci Incorporated). Goat immune sera were affinity-purified using standard procedures. A custom made Plk4

peptide (aa 564-580 was synthesized and conjugated to KLH for immunization (ProSci Incorporated). Rabbit immune sera were

affinity-purified using standard procedures. Affinity-purified antibodies were directly conjugated to DyLight 550 and DyLight 650 flu-

orophores (Thermo Fisher Scientific) for use in immunofluorescence.

Immunofluorescence
For immunofluorescence in mouse tissues (with the exception of the brain sections for Figure S3A), samples were harvested and

fixed overnight in 4%paraformaldehyde at 4�C. Tissues werewashed 3 times for 30minutes eachwith 1 x Phosphate Buffered Saline

(PBS). Tissues were incubated in 30% sucrose overnight, embedded in OCT compound (Tissue-Tek) and frozen in a dry ice-ethanol

bath cooled to -80�C. Tissues were cut in 12 mm sections using a Leica cryostat (Leica Biosystems, CM3050) and placed on Super-

frost Plus treatedmicroscope slides (Fisher Scientific). For staining, slides were rehydrated with PBS supplemented with 0.5% Triton

X-10 (PBST), and incubated in primary antibody diluted in blocking solution (10% donkey serum in PBST) for 2 hours at room tem-

perature or overnight at 4�C. Slides were washed 3 times with PBST and incubated for 1 hour at room temperature in secondary anti-

bodywith 1 mg/ml 40,6-diamidino-2-phenylindole (DAPI) diluted in blocking solution. Slides were washed 3more timeswith PBST and

mounted in ProLong Gold Antifade (Invitrogen). For brain sections (for quantification of cortical thickness in Figure S3A), brains were

harvested from 4 month old mice, fixed in 1% PFA overnight and 4�C, washed three times in PBS for 30 minutes each, then dehy-

drated in methanol overnight at -20�C. The next day, brains were rehydrated in PBS and embedded in 3% agarose. Once set, brains

were cut in 120 mm sections using a Leica vibratome (Leica Biosystems) and kept in 1x PBS until staining. Sections were stained with

1 mg/ml DAPI diluted in PBS for 1 hour at room temperature and mounted in Flouromount-G (SouthernBiotech).

For immunofluorescence, primary MEFs were grown on 18-mm glass coverslips and fixed for 10 minutes in 100% ice cold meth-

anol at -20�C for 10 minutes. Cells were blocked in 2.5% FBS, 200mM glycine, and 0.1% Triton X-100 in PBS for 1 hour. Primary and

secondary antibodies were incubated in the blocking solution for 1 hour at room temperature. DNAwas stainedwith DAPI for 1minute

and cells were mounted in ProLong Gold Antifade (Invitrogen).

Staining was performed with the following primary antibodies: Pericentrin (rabbit, Abcam 1:1000), CEP192-647 (directly-labeled

goat, raised against CEP192 a.a. 1-211, custom made by ProSci Incorporated, 1:100), g-Tubulin-555 (directly-labeled goat, raised

against full-length g-Tubulin, custom made by ProSci Incorporated, 1:100), CEP192-650 (directly-labeled goat, raised against

CEP192 a.a. 1-211, custom made by ProSci Incorporated, 1:100), Cleaved Caspase 3 (rabbit, Cell Signaling Technologies,

1:500), p-Histone H2A.X (Ser139) (rabbit, Cell Signaling Technologies, 1:1000), Centrin (mouse, Millipore, 1:1000), CEP192 (rabbit,

raised against CEP192 a.a. 1-211, a kind gift from Karen Oegema, Ludwig Institute for Cancer Research, 1:1000), Plk4#1

(directly-labeled rabbit, raised against Plk4 a.a. 510-970, custom made by ProSci Incorporated, 1:1000 (Moyer et al., 2015)) and

Plk4#3 (directly-labeled rabbit, raised against Plk4 a.a. 564-580, custom made by ProSci Incorporated, 1:1000). TUNEL staining

was performed using the in situ cell death detection kit (Sigma) following the manufacturer’s instructions. Secondary donkey anti-

bodies were conjugated to Alexa Fluor� 488, 555 or 650 (Life Technologies).

Immunofluorescence images of MEFs were collected using a Deltavision Elite system (GE Healthcare) controlling a Scientific

CMOS camera (pco.edge 5.5). Acquisition parameters were controlled by SoftWoRx suite (GE Healthcare). Images were collected

at room temperature (25�C) using an Olympus 40x 1.35 NA, 60x 1.42 NA or Olympus 100x 1.4 NA oil objective at 0.2 mm z-sections.

Images were acquired using Applied Precision immersion oil (N=1.516).

Immunofluorescence images of tissues were collected using a Zeiss LSM700 confocal microscope. Acquisition parameters were

controlled by ZEN (Zeiss). Images were collected at room temperature (25�C) using a Zeiss 63x 1.4 NA oil objective at 0.3 mm z-sec-

tions. Images were acquired using Zeiss immersion oil (N=1.518).

Image Analysis
Quantification of Plk4 levels at the centrosome was performed as previously described (Lambrus et al., 2015). Imaris software (Bit-

plane) was used to quantify of total number of nuclei per field of view in the tissues stained with CC3 or Ki67.

Quantitative Real Time PCR
Total RNA was isolated from cells or homogenized tissue using Trizol Reagent (Thermo Fisher Scientific) and prepared for reverse

transcription using SuperScript III/IV Reverse transcriptase (Thermo Fisher Scientific). Quantitative real time PCR was performed us-

ing SYBRGreen qPCR Master Mix (Thermo Fisher Scientific) on iQ5 multicolor real time PCR detection system (Bio-Rad). Analysis

was performed using iQ5 optical system software (Bio-Rad). Reactions were carried out in triplicate using the following primers:

Plk4 Fow: 5’-GAA ACA CCC CTC TGT CTT GG-3’ and Rev: 5’-GCA TGA AGT GCC TAG CTT CC-3’; p53 Fow: 5’- CCC GAG TAT

CTG GAA GAC AG-3’ and Rev: 5’-ATA GGT CGG CGG TTC ATG CC-3’; FAS Fow: 5’- GGA AAA GGA GAC AGG ATG ACC-3’

and Rev: 5’-CTT CAG CAA TTC TCG GGA TG-3’; BCL2 Fow: 5’-TTC GCA GCG ATG TCC AGT CAG CT-3’ and Rev: 5’-TGA AGA

GTT CTT CCA CCA CCG T-3’; BAX Fow: 5’-ATG CGT CCA CCA AGA AGC TGA-3’ and Rev: 5’-AGC AAT CAT CCT CTG CAG

CTC C-3’; PUMA Fow: 5’-GCA GCA CTT AGA GTC GCC-3’ and Rev: 5’-GTC GAT GCT GCT CTT CTT GT-3’. Expression values

for p53 target genes (Figure S5C) were normalized to GAPDH, amplified with GAPDH Fow: 5’-AAT GTG TCC GTC GTG GAT CTG
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A-3’ and Rev: 5’-GATGCC TGC TTCACCACC TTC T-3’. Plk4 overexpression values inMEFs and tissues (Figures 2A, S1A, and S2A)

were normalized to b-actin, amplified with b-actin Fow: 5’- GGC TGT ATT CCC CTC CAT CG-3’ and b-actin Rev: 5’- CCA GTT GGT

AAC AATGCC ATG T-3’ primers, with the exception of the APCmin/+ MEF experiment in Figure S4D, which were normalized to HPRT,

amplified with HPRT Fow: 5’-TGA TCA GTC AACGGGGGACA-3’ and HPRT Rev: 5’-TTCGAG AGG TCC TTT TCA CCA-3’. The fold

changes inmRNA expression were calculated using the 2-DDCt method, and expression values were expressed as fold increase in the

average expression compared with non-transgenic tissues.

Metaphase Spreads and FISH Analysis
To harvest splenocytes, freshly harvested spleens were minced and filtered through a 40 mm cell strainer. Cells were resuspended in

RPMI media (Corning Cellgro) supplemented with 10% fetal bovine serum (Sigma), 100 U/mL penicillin,100 U/mL streptomycin, 1%

HEPES (Sigma), 1% Sodium Pyruvate (Corning Cellgro), 1% Nonessential amino acids (Sigma), 10 U/mL Interleukin-2 (Roche),

5 mg/mL Concanavalin A (Sigma), 10mg/mL Lipopolysaccharides (Sigma) and grown overnight at 37�C in an atmosphere of 5%

CO2 and 3% O2. Cell were treated with 100 ng/ml Colcemid (Sigma) for 4 hours, trypsinized and resuspended in 75 mM KCl for

15 minutes at room temperature. Five drops of freshly prepared Carnoy’s fixative (75% Methanol: 25% Acetic Acid) was added,

the cells pelleted and resuspended in fixative overnight at 4�C. Cells were dropped onto slides pretreated with acetic acid. Dried

slides were incubated with DAPI for 1 minute and imaged using a Deltavision Elite system.

Mouse FISH probes for 10 cM loci on chromosome 15 or 16 were purchased from Empire Genomics. Cells were fixed with Car-

noy’s fixative (75% Methanol: 25% Acetic Acid) for 15 minutes at room temperature and stored at -20�C until needed. DNA and

probes were denatured at 69�C for 2 minutes, and hybridization was performed at 37�C overnight. The next day, cells were washed

with 0.4x SSCbuffer (Sigma) for 2minutes at 72�C, thenwashedwith 2x SSC (0.05%Tween-20) at room temperature for 30 seconds.

Cells were briefly washed with dH2O, air dried and mounted with VectaShield containing 150 ng/mL DAPI.

Flow Cytometry
Cell pellets were fixed in cold 70% EtOH for 24 hours, washed once in PBS and resuspended in PBS supplemented with 10 mg/ml

RNAse A and 50 mg/ml Propidium Iodide (PI). Samples were incubated at room temperature for 30 minutes and analyzed on a flow

cytometer (FACSCalibur; Becton Dickinson).

Single Cell Sequencing
Single cellswere isolated from thymicorB-cell lymphomasbydissecting the tumor andmincing the tissue througha 70mmcell strainer.

To isolate single epidermalcells, the skinwas removedandfloatedon0.25%trypsinwith1mMEDTA inDMEM (Gibco)overnightat 4�C.
Theepidermiswasscrapedoff using a scalpel and tissuewasdissociated into single cells bypipetting. Trypsinwas neutralizedby addi-

tion of 7% FBS diluted in PBS. This suspension was then passed through a 70 mm (BDBiosciences) filter followed by a 40 mm (BDBio-

sciences) filter. Isolated single cells from the thymus, spleen and epidermis were washed twice in PBS and stored in FBS with 10%

DMSOat�80 �C until sorted. Single cell karyotype analysis was performed and analyzed as previously described (Bakker et al., 2016).

Whole Genome Sequencing
Genomic DNA was extracted from tissue samples using the GenElute Mammalian Genomic DNA extraction kit (Sigma) following the

manufacturer’s instructions. Shallow Whole Genome Sequencing (WGS) was performed as previously described (Nassar et al.,

2015). Briefly, whole-genome DNA libraries were created using the Illumina TruSeq DNA sample preparation kit V2 according to

the manufacturer’s instructions, and resulting whole-genome libraries were sequenced at low coverage on a HiSeq2500 (Illumina)

using a V3 flow cell generating 50-bp reads. Raw sequencing reads were mapped to the mouse reference genome (GRCm38/

mm10) using Burrows-Wheeler Aligner (Li andDurbin, 2009).We removed PCRduplicates with Picard (v1.32 and v1.43) and obtained

an average of 7,788,246 unique mapped reads per sample. The number of reads was counted in windows of 50 Kb and corrected for

the genomic wave. Segmentation was performed by the Ascat algorithm (Van Loo et al., 2010). GISTIC 2.0 (Genomic Identification of

Significant Targets in Cancer) (Beroukhim et al., 2007) was used to identify recurrent Copy Number Alterations in Figures 4D and 4E.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed usingGraphPad Prism software. Differences between sampleswere tested using a two-tailed Stu-

dent’s t-test or a Log-rank test for survival analysis. Error bars represent SEM unless otherwise indicated. Please refer to figures and

figure legends for number of cells or animals used per experiment.

DATA AND SOFTWARE AVAILABILITY

Raw sequencing reads for whole genome sequencing are available in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) un-

der accession number ArrayExpress: E-MTAB-5043. Raw sequencing reads for single-cell whole genome sequencing are available

in the European Nucleotide Archive database (www.ebi.ac.uk/ena) under accession number PRJEB1854.
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